The increase of vasomotor tone avoids the ability of the dynamic preload indicators to estimate fluid responsiveness
نویسندگان
چکیده
BACKGROUND The use of vasoconstrictor can affect the dynamic indices to predict fluid responsiveness. We investigate the effects of an increase of vascular tone on dynamic variables of fluid responsiveness in a rabbit model of hemorrhage, and to examine the ability of the arterial pressure surrogates dynamic indices to track systolic volume variation (SVV) during hypovolemia under increased vasomotor tone. METHODS Eighteen anesthetized and mechanically ventilated rabbits were studied during normovolemia (BL) and after blood progressive removal (15 mL/kg, BW). Other two sets of data were obtained during PHE infusion with normovolemia (BL + PHE) and during hypovolemia (BW + PHE). We measured central venous and left ventricular (LV) pressures and infra diaphragmatic aortic blood flow (AoF) and pressure. Pulse pressure variation (PPV), systolic pressure variation (SPV) and SVV were estimated manually by the variation of beat-to-beat PP, SP and SV, respectively. We also calculated PPVapnea as 100 × (PPmax-PPmin)/PP during apnea. The vasomotor tone was estimated by total peripheral resistance (TPR = mean aortic pressure/mean AoF), dynamic arterial elastance (Eadyn = PPV/SVV) and arterial compliance (C = SV/PP). We assessed LV preload by LV end-diastolic pressure (LVEDP). We compared the trending abilities between SVV and pressure surrogate indices using four-quadrant plots and polar plots. RESULTS Baseline PPV, SPV, PPVapnea, and SVV increased significantly during hemorrhage, with a decrease of AoF (P < 0.05). PHE induced significant TPR and Eadyn increase and C decrease in bled animals, and a further decrease in AoF with a significant decrease of all dynamic indices. There was a significant correlation between SVV and PPV, PPVapnea and SPV in normal vasomotor tone (r2 ≥ 0.5). The concordance rate was 91%, 95% and 76% between SVV and PPV, PPVapnea and SPV, respectively, in accordance with the polar plot analysis. During PHE infusion, there was no correlation between SVV and its surrogates, and both four-quadrant plot and polar plot showed poor trending. CONCLUSION In this animal model of hemorrhage and increased vasomotor tone induced by phenylephrine the ability of dynamic indices to predict fluid responsiveness seems to be impaired, masking the true fluid loss. Moreover, the arterial pressure surrogates have not the reliable trending ability against SVV.
منابع مشابه
Preload Effect on Nonlinear Dynamic Behavior of Aerodynamic Two-Lobe Journal Bearings
This paper presents the effect of preload on nonlinear dynamic behavior of a rigid rotor supported by two-lobe aerodynamic noncircular journal bearing. A finite element method is employed to solve the Reynolds equation in static and dynamical states and the dynamical equations are solved using Runge-Kutta method. To analyze the behavior of the rotor center in the horizontal and vertical directi...
متن کاملPredicting stroke volume and arterial pressure fluid responsiveness in liver cirrhosis patients using dynamic preload variables: A prospective study of diagnostic accuracy.
BACKGROUND Predicting whether a fluid challenge will elicit 'fluid responsiveness' in stroke volume (SV) and arterial pressure is crucial for managing hypovolaemia and hypotension. Pulse pressure variation (PPV), SV variation (SVV) and the plethysmographic variability index (PVI) have been shown to predict SV fluid responsiveness, and the PPV/SVV ratio has been shown to predict arterial pressur...
متن کاملINVESTIGATION OF PRELOAD EFFECTS ON NONCIRCULAR GAS BEARING SYSTEMS PERFORMANCE
This paper presents the effect of preload on static and dynamic performance characteristics of several gas-lubricated noncircular journal bearing configurations. The linearized system approach using finite element method is used to obtain both steady state and dynamic characteristics. The results of the investigation shows that preload has a significant effect on frictional power loss and the ...
متن کاملDynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients
INTRODUCTION Hemodynamic resuscitation should be aimed at achieving not only adequate cardiac output but also sufficient mean arterial pressure (MAP) to guarantee adequate tissue perfusion pressure. Since the arterial pressure response to volume expansion (VE) depends on arterial tone, knowing whether a patient is preload-dependent provides only a partial solution to the problem. The objective ...
متن کامل[Assessment of cardiovascular preload and response to volume expansion].
Volume expansion is used in patients with hemodynamic insufficiency in an attempt to improve cardiac output. Finding criteria to predict fluid responsiveness would be helpful to guide resuscitation and to avoid excessive volume effects. Static and dynamic indicators have been described to predict fluid responsiveness under certain conditions. In this review we define preload and preload-respons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013